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ABSTRACT
Developing and maintaining resilient transportation infrastructure
is a key strategy for meeting several UN sustainable development
goals in the face of climate change-driven extreme flooding events.
We present a framework for performing data-driven vulnerability
analysis for flooding on existing transportation networks, and use
this analysis to inform decision-making about investments for cli-
mate adaptation. We apply this approach to study the potential
impacts of severe flooding on regional mobility in Senegal, using a
combination of flood hazard maps and a travel demand model based
on call detail record data. We use the estimated number of infeasible
trips as a direct measure of flooding-induced mobility impacts, as
well as an objective for minimizing these impacts. We then compare
three alternative road network upgrade strategies to assess the ex-
tent to which each strategy would preserve network functionality
under a given flooding scenario. We illustrate that strategies driven
solely by travel demand can lead to underinvestment in roads that
are at risk of flooding, while solely focusing on repairing flooded
road segments neglects the criticality of those repairs to mobility.
For example, in a 100 year flooding scenario with a fixed budget, our
strategy that considers both flooding and mobility data can achieve
a 53% reduction in the number of infeasible trips, while a strategy
that just considers flooding data achieves only a 38% reduction for
the same cost. Our framework can be applied more broadly to inte-
grate information from a variety of sources about climate hazards
and potential human impacts to make better informed decisions
about investments in critical infrastructure systems.

CCS CONCEPTS
• Social and professional topics → Sustainability; • Theory
of computation→Network optimization; •Applied comput-
ing → Transportation;
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1 INTRODUCTION
Climate change is a global concern that is already causing wide-
spread disruptions to environmental and socioeconomic systems
and human health [6, 14, 16]. Recent studies have assessed the risks
posed by extreme weather events, rising sea levels, and altered
temperature and precipitation regimes to essential infrastructure
systems [8, 18]. Damages to infrastructure are of particular con-
cern for developing countries, where investment in energy, water,
communication and transport infrastructure is a key strategy for
meeting several UN sustainable development goals. For instance,
the estimated costs of road repair and maintenance across Africa
under current climate change projections exceed $150 bn, which
can significantly divert funding from initiatives for expansion and
development [8]. Thus, climate change will exacerbate existing
socioeconomic vulnerabilities and threaten the success of crucial
development schemes unless steps are taken to proactively mitigate
these costs.

Road networks are especially important to supporting socioe-
conomic development in the least developed countries, since they
provide access to services like education and healthcare and enable
overland trade flows that are integral to the growth of developing
economies. Africa’s infrastructure deficit has led to the establish-
ment of initiatives like the Programme for Infrastructure Devel-
opment in Africa [19], and indeed, Goal 9 of the United Nation’s
Sustainable Development Goals is to “build resilient infrastructure,
promote sustainable industrialization and foster innovation”. How-
ever, currently about 85% of the road network in Western Africa
and 88% of that in south central Africa are comprised of unpaved
roads [8], making them highly susceptible to damage from precipi-
tation which accounts for 80% of their degradation [7].

In general, data-driven machine learning and optimization tools
have been used to help policy makers at all scales of government
make better informed decisions with regards to sustainability objec-
tives. For example, deep learning models have been used to combine
satellite imagery, night light data, and scarce household survey data
in Africa to create spatially explicit poverty maps in African coun-
tries using only satellite imagery [11]. This type of information
helps to close the data gap between the developed and developing
world and lets policy makers allocate resources to aid in areas where
the need is the greatest. Mathematical optimization tools have also
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been widely adopted by conservation planners designing wildlife
conservation reserves that balance multiple objectives, respect bud-
get restrictions, and meet spatial or connectivity requirements and
conservation targets to achieve improved outcomes for endangered
species [5, 9]. These tools help decision-makers develop system-
atic and cost-effective plans whose benefits and costs are explicitly
quantified, which is critical for evaluating and reporting the success
of these initiatives.

The first step in a framework for making investment recommen-
dations for climate-resilient road infrastructure is analyzing the
exposure and sensitivity of roads to climatic pressures. Secondly, the
contribution of each road to regional accessibility must be assessed.
Roads that are both critical thoroughfares and frequently rendered
inoperative under historical or projected climatic conditions should
be prioritized for weather-proofing and other upgrades. Lastly, after
risk and mobility impacts are determined, optimization techniques
can be used to determine explicit plans for allocating road main-
tenance funds under multiple sustainable development objectives,
such as maximizing rural connectivity or minimizing the expected
number of people isolated due to weather-related infrastructure
failures. This approach has the potential to minimize the long-term
cost of establishing a reliable road network while helping to buffer
vulnerable populations from extreme weather events. This frame-
work is similar in spirit to disaster response applications, in which
the primary goal is typically to facilitate emergency evacuation [13]
or protect critical assets [23]. These approaches focus on meeting
immediate demands placed on the road network following a given
disaster scenario, whereas our work focuses on recommending
strategic upgrades to maintain the large-scale, normal functionality
of the road transportation network under different scenarios.

In this work we implement the framework described in the previ-
ous paragraph using techniques from network science and optimiza-
tion with compiled data sources, then demonstrate its application
to improving the flood-resilience of the national road network in
Senegal. Specifically, we find which roads in Senegal should be
fortified against flooding to prevent losses to mobility, given a fixed
budget for infrastructure investments. We integrate flooding data
from Fathom.Global, mobility data from Orange S.A., and GIS data
describing the major road network in Senegal to describe the poten-
tial impacts of different flooding scenarios on the road network and
its functionality. We examine several strategies for recommending
road upgrades that take different data dimensions into account.
Our experiments show how solutions generated by the strategy
that considers all of the available data is able to best increase the
accessibility under different flooding scenarios, highlighting the
need for both flooding and mobility data to prepare for flooding
outcomes. In particular, high-resolution flood mapping has recently
become available for the entire world, and call detail records are
also globally available thanks to high cellular subscription rates in
most countries. This highlights the promise of our approach for
developing decision support tools for policy makers in Senegal and
worldwide.

2 METHODS
2.1 Data
The process that we follow in this paper can be seen as a general
framework for studying the effects of flooding on mobility and
providing recommendations for how to maximize accessibility in
any country. This framework requires three pieces of data that
cover the study area: 1.) a GIS representation of the road network,
2.) a spatially-explicit measure of flood risk, and 3.) mobility data
describing flows between different zones/regions. While this work
is an application of our framework to Senegal, the same process
can be applied to other places.

We first construct an undirected graph representation of the
road network based on an ArcGIS shapefile [1], with edges E rep-
resenting road segments and vertices V representing the latitude-
longitude coordinates of the endpoints of these road segments. Each
edge has a distance property representing the length of the cor-
responding road segment. For the Senegal national and regional
road network, this results in a connected graph with 6,917 vertices
and 7,175 edges. Open source geospatial data made available by
projects like OpenStreetMap [4] can be used to generate these graph
representations for road networks in other regions or at different
resolutions.

The Fathom Global dataset [20, 22] provides flooding data for
the entire globe at the resolution of approximately 90m2. Specifi-
cally, this dataset provides flood depth rasters for floods of different
severities characterized by return period λ, which is the estimated
time interval between flooding events of a similar intensity. Intu-
itively, a 500-year flood is more severe and less likely to occur than
a 100-year flood. Given a return period λ, the value of each cell of
the flood depth raster is the maximum flood depth estimated by a
hydrodynamic model for a flood of the specified severity. While
our study area is limited to Senegal, this dataset is generated at a
global scale and thus could be utilized for similar studies in other
countries. There are also alternative freely-available data sources
for flood mapping, such as from the NASA MODIS near real-time
global flood mapping project [3].

Call detail record (CDR) data, consisting of time-indexed se-
quences of cell towers used by anonymized users, is an excellent
source of ground-truth human mobility data. In Senegal, we use
CDR data provided by Orange [17], the biggest mobile provider in
Senegal with 1,666 cell towers across the country, with the data
made available through the UN Data for Climate Action Chal-
lenge [2]. Since CDR data is recorded only in terms of cell tower
used, we use the approximate latitude-longitude locations of the
N cell towers to construct “cell tower zones”, Voronoi regions con-
taining all locations that are closer to a given cell tower than to any
other tower (Figure 1(c)). Given the sequence of cell tower zones vis-
ited by each user in the dataset, e.g. {l1, l2, · · · , lK } for a customer
that moves through K zones, we consider each consecutive pair
of cell tower zones (lk , lk+1) to be a trip from zone lk to zone lk+1.
We obtain the inter-zone travel demand by constructing an N × N
origin-destination (OD) zone trip matrix T whose (i, j)-th entry
represents the total number of trips taken from cell tower zone i to
zone j by all users in the dataset. For further applications, and in
the absence of CDR data, analytical human mobility models, such
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(a) Senegal national and regional highway
system.

(b) Estimated flood depth for an 100-year
flood.

(c) Number of outgoing trips per cell tower
zone.

Figure 1: Data sources for estimating infrastructure exposure to flooding and potential impacts on mobility.

Figure 2: Graphs showing the effect of floods of increasing severity on the number of flooded road segments, total distance
of flooding, and estimated percent of infeasible trips over the road network. Three flooding thresholds, 0.5, 1m, and 1.5m are
shown.

as gravity models [12], can be used to approximate zone-to-zone
trips given the population of each zone.

2.2 Vulnerability Assessment
The first step towards improving the flood resilience of the Senegal
road network is to estimate the exposure of each road segment to
flooding in a given return period scenario. To do this, we first apply
a threshold of 1m to the flood depth raster and then obtain the
geometric intersection of roads with raster cells with a maximum
flood depth value ≥ 1m. Edges corresponding to road segments that
pass through any such cells form a subset EλF ⊆ E of flooded roads.
For each edge in this set we compute the flooded distance to estimate
the length of the road segment that would need to be upgraded
to make the road segment traversable again. We also obtain an
unflooded subgraph Gλ

U = (V ,EλU ) consisting of the original set
of vertices V and any edges corresponding to road segments not
affected by flooding, representing the parts of the road network
that are still traversable. Note, the two edge sets have no edges in
common (i.e. EλF ∩ EλU = ∅) and EλF ∪ EλU = E.

Next, we estimate the accessibility impact of a given flood sce-
nario. Variousmeasures have been used to describe the performance
of transportation networks in disasters, many of which are based
on the idea of generalized travel cost [24], which quantifies the

total amount of distance, time, money, etc. that must be traveled
or spent in order to meet travel demand using a given transporta-
tion network. A degraded network will have a higher generalized
travel cost due to the loss of paths leading to increased difficulty
of traveling between pairs of locations. In this work, we consider
binary costs, in which the cost associated with an attempted trip
from one location to another is 0 if the trip is successful and 1 if
there is no path between those locations in the degraded network.
The decrease in the accessibility of the road network can then be
quantified in terms of the number of trips that become infeasible
due to flooding.

In order to connect the flooding effects on the road network
to the zone-to-zone demand data, we assume that trips between
pairs of zones happen between random origins and destinations
within each zone. Specifically, for each zone i , we calculate Zi , the
set of vertices from the road network that are within its boundaries.
Then, we assume that a trip leaving zone i and arriving at zone j
is equally likely to start from any vertex within Zi , and similarly
equally likely to end at any vertex in zone Z j . For a given road
networkGλ = (V ,Eλ), we compute two N ×N matrices C0(G) and
C1(G). In C1(G) entry (i, j) stores the number of pairs of vertices
(u,v) with u ∈ Zi and v ∈ Z j between which a path exists in graph
G. Similarly, in C0(G) the (i, j)-th entry stores the number of pairs
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of vertices (u,v) between which there is no path in graph G. Then,
based on our assumption the fraction of unsuccessful trips from
zone i to j is given by C0

i j (G)/
(
C0
i j (G) + C

1
i j (G)

)
. Then, we let

I (G) =
N∑
i=1

N∑
j=1

Ti jC0
i j (G)

C0
i j (G) + C

1
i j (G)

be the number of infeasible trips. Here the number of infeasible
trips between an origin i and destination j is counted as the total
number of trips from i to j, multiplied the fraction of infeasible
paths between the two zones.

2.3 Optimizing Accessibility in a Given
Flooding Scenario

One plausible goal for improving the flood-resilience of the na-
tional road network is to strategically fortify road segments against
flooding (e.g. with surfacing, elevation, etc.) such that the normal
functioning of the network is preserved as much as possible. We
propose minimizing the estimated number of trips made infeasible
due to flooding as a way to achieve this goal. We suppose that
we have a fixed road maintenance budget available for financing
upgrades, and further that the monetary cost of fortifying a road
segment against flooding of a given severity is proportional to the
length of the road segment that is estimated to become flooded in
that scenario. Formally:

Given: A graph Gλ
U representing the flooded parts of the

road network, EλF a set of flooded roads, costs c(e) for up-
grading each road e ∈ EλF and budget B.
Find: A feasible intervention plan consisting of edges U ⊆
EλF such that

∑
e ∈U c(e) ≤ B, that minimizes∑N

i=1
∑N
j=1

Ti jC0
i j (G′)

C0
i j (G′)+C1

i j (G′) , where G
′ = (V ,U ∪ EλU ).

Note that the quantities C0
i j (G

′) and C1
i j (G

′) are dependent on our
road upgrade decisions U . Given a candidate set U , computing
C0(G ′) and C1(G ′) involves checking for the existence of paths be-
tween pairs of vertices in the upgraded road network, which can be
done in a polynomial number of calls to BFS or DFS. However, the
number of possible combinations of roads we can upgrade is expo-
nential in |EλF |, making an exhaustive search for an optimal feasible
solution intractable. One solution strategy for solving combinato-
rial optimizations problems like the above problem is to formulate
a mixed integer linear program in which decisions about whether
or not to upgrade each road segment are encoded in binary deci-
sion variables and the existence of paths between pairs of nodes
is encoded using network flow constraints (e.g. see [10]). Then,
sophisticated commercial LP solvers such as CPLEX or Gurobi may
be applied to solve the problem using a combination of heuristics
and the branch-and-bound algorithm. Alternatively, it is possible
to iteratively construct the set U of roads to upgrade following,
e.g. a greedy heuristic [15], and metaheuristic optimization tech-
niques such as GRASP (greedy randomized adaptive search pro-
cedure) or ant colony optimization could be employed to improve
the performance of the heuristic algorithm in practice. When the
objective function exhibits the property of submodularity or di-
minishing returns, the greedy heuristic has proven approximation

guarantees [15]. Although our objective function does not exhibit
submodularity, we nevertheless adopt a greedy strategy, selecting
the edge that affords the largest improvement in the number of
feasible trips per unit cost at each iteration. Specifically, at the k-th
step we add the edge e with the largest value

I (G′
k−1)−I (G

′
k )

c(e) , where
G ′
0 = G

λ
U and G ′

k = G
′
k−1 ∪ {e}. Note that even this simple greedy

algorithm is computationally expensive: we will start with |EλF |
potential choices, where evaluating each choice will require recom-
puting all-pairs shortest paths. Once the “best” edge is selected
and added to the graph, we must repeat this process with |EλF | − 1
candidate choices, and so on until the given budget is used.

3 EXPERIMENTS
3.1 Baselines
We consider a set of baseline infrastructure development schemes
to assess demand- and flooding-aware road upgrades under a given
budget. These baselines, the mobility and flooding methods, are
chosen to contrast against the potential benefits afforded by incor-
porating both spatially-explicit flooding and travel demand data to
minimize the number of infeasible trips due to flooding, which we
refer to in this section as mobility + flooding.

Mobility: Transportation infrastructure development plans
will likely prioritize investments in assets that contribute to
greater mobility and connectivity, e.g. by facilitating travel
demand between major urban centers. As a simplistic exam-
ple of such a strategy, we consider upgrading roads in order
of their usage, estimated by assigning trips to routes and
determining which road segments get the most trips. That is,
we construct the set U of roads to upgrade by adding edges
in decreasing order of (estimated number of trips over )e

(distance of )e until we
exhaust the budget. All roads in the road network are candi-
dates for upgrades, and the amount of investment in each
road segment is set proportional to the length of the road.
Specifically, we set β = 1

|EλF |
· ∑e ∈EλF

(flooded distance in e )
(distance of e ) .

Then, for all edges e ∈ E we set c(e) = β · (distance of e).
Intuitively, we set the cost of upgrading a road segment to be
on average the same amount it would cost to fortify in the
flooded scenario, if it was flooded. When spatially-explicit
flooding information is unavailable or not used to assess
costs, it is possible to 1) select roads that are not flooded to
upgrade in order to improve some other accessibility objec-
tive, and 2) upgrade a road that gets flooded, but to allocate
a lower investment than the amount required to adequately
fortify the road against the flooding projected to occur, in
which case the road remains impassable under the flooding
scenario.
Flooding: An alternative goal may be to improve the flood-
resilience of the road network by ensuring that themaximum
amount of the network remains operational in a flood of a
given severity. This equates to maximizing the number of
edges that can be fortified with a fixed budget. Here, only
roads that will be flooded in the given flood setting are candi-
dates for upgrading, and we set c(e) = (flooded distance in e)
for all such edges e ∈ EλF . Since a road segment is considered
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Figure 3: Impacts of the λ = 100 flooding scenario and a
threshold of 1m. The (top) figure shows the road network of
Senegal, with red links indicating roads that are impassable
due to flooding. The (bottom) figure shows the estimated
number of outgoing trips per zone that cannot be completed
due to the damages in the road network.

impassable even if a small fraction of it becomes flooded, we
construct the set of roads to upgrade, U , by adding edges in
increasing order of c(e) until the budget is exhausted.

3.2 Impacts of Flooding on Interregional
Transport in Senegal

3.2.1 Impacts of Different Flood Severities. First, we examine
how floods of different severities affect the existing Senegal road
network and the estimated number of trips that can be completed
over the road network in each scenario. The functionality of the road
network depends on both its exposure to flooding (or the magnitude
of the flood event) as well as its sensitivity (characterized here
by the flooding threshold), two key components of vulnerability
analysis. Figure 2 shows how as the severity of the flood increases,

the number of traversable road segments falls, where the size of
this effect varies with the flooding threshold considered. Most of
the road segment failures occur even during floods of relatively
low severities; e.g. approximately 25% of road segments fail during
a 1000-year flood due to flooding over 1m, but a 100-year flood is
enough to cause 15% of road segments to fail to the same level and
is 10 times more likely to occur. The total flooded distance also
increases rapidly for low to moderate flood severities. Assuming
that costs of road network repair, maintenance or fortification will
be proportional to the length of roads that need to be fixed, this
indicates that attempting to fortify the entire network against even
relatively minor, frequent flooding events will quickly become very
costly. This highlights the need for a cost-effective infrastructure
development plan that will prioritize roads to fortify in order to
recover the maximum effective functionality of the network, e.g. in
terms of the number of trips that remain feasible.

As the flood severity increases, the percentage of trips that can-
not be completed also increases, but in a non-smooth fashion rela-
tive to the road network flooding. This suggests there are different
types of trips that become infeasible at different levels of flooding,
with some becoming infeasible even in milder flooding scenarios
and others becoming infeasible only when flooding becomes much
more widespread.

3.2.2 Efficacy of Alternative Road Upgrade Schemes. Next, we
compare the performance of the baseline methods, mobility and
flooding, with the greedy optimization method,mobility + flood-
ing, for choosing road upgrades that maximize the number of trips
that can be successfully completed using the road network given
flooding of severity λ. We focus on the 100-year flood scenario and
consider flood depths of 1m or greater (Figure 3). In this setting, we
see that road segments throughout the Senegal highway system
become impassable, especially along the northern border along the
Senegal River and south of the Gambia along the Casamance River.
Mobility in these regions is severely impacted as can be seen by the
large numbers of unsuccessful outgoing trips from zones in these
areas.

Fortifying the roads with the highest estimated number of trips,
i.e. using the mobility baseline method to pick roads to fortify,
does not significantly reduce the number of infeasible trips, pri-
marily because most of the roads selected for investment are not
flooded. The flooding baseline method upgrades the largest num-
ber of flooded roads possible with the available budget and allows
more trips to remain feasible under the specified flooding setting
simply by maximizing the number of links that remain operational
in the network. This method does not take into consideration either
the level of use or demand on each link or the possible existence
of alternative routes, both of which are factors in how critical a
road segment is for regional connectivity. Roads that are flooded
but enable relatively few trips may be considered less critical to
supporting mobility than those that are heavily used. Similarly,
flooded roads may not necessarily prevent trips from being com-
pleted if there are other paths that can be taken from the origin to
the destination. These effects can only be considered by using both
flooding exposure and mobility impacts to inform investment deci-
sions, as in the mobility + flooding method. Figure 4 shows that
the mobility + flooding approach can yield a budget allocation
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Figure 4: Effect of alternative road investmentmethodswith
varying budgets on the percent of impossible trips under the
λ = 100 flooding scenario and 1m threshold. Budgets are
shown as percentage of the cost of repairing all roads in the
given flooding scenario. The black horizontal line shows the
baseline percentage of impossible trips when no road invest-
ments are made.

that recovers more effective functionality of the road network (in
terms of the number of successful trips made) even though the num-
ber of links that are restored is lower than the other methods (e.g.
in the 5% budget case, the mobility + flooding method restores
175 edges, while themobility and flooding methods restore 179
and 359 edges respectively).

3.2.3 Differential Regional Benefits. We compare the spatial
distribution of roads recommended for repair by the mobility +
floodingmethod to those chosen by the baseline methods. Figure 5
shows the roads that are selected for upgrades by each method, as
well as the improvements to the number of possible outgoing trips
per zone in the λ = 100 flood scenario. While the flooding method
chooses almost twice as many individual road segments as the
mobility + flooding method, the additional edges do not confer
as much benefit to mobility. For instance, at the 5% budget level,
there are 49 edges chosen by the mobility + flooding method
that are not selected by the flooding method, which then must be
responsible for the 2% difference in the improvements between both
methods. These 49 roads are focused around higher population areas
in the north and regions around the capital Dakar on the western
tip of Senegal. Specifically, in Figure 5(b) we observe that there
are larger improvements to the number of outgoing trips in the
high population areas in Saint-Louis on the north western coastline,
and the Diourbel and Kaolack urban regions to the east of Dakar
while there are few improvements in the south-eastern sparsely
populated portion of the country. In contrast, Figure 5(d) shows
that the flooding method results in more improvements in the
south east portion, with fewer improvements in the same higher
populated areas. It is also evident from the spatial distribution of the
repaired roads in each case that incorporating travel demand results
in chosen roads that are closer to major settlements. We can see in
Figure 5(e) that themobility method suggests road fortifications

along the main N1 and N7 highways as those roads carry the largest
number of trips. This solution, which may be beneficial under
different objectives, does not help restore connectivity, as these
roads are not compromised due to flooding (by either not being
flooded or having alternate unflooded paths available for use).

4 DISCUSSION
We have proposed a framework to quantify the impacts of flooding
on human mobility and subsequently provide road fortification
suggestions that maximize accessibility over the road network. We
demonstrate the application of this framework in Senegal. Our
results suggest that fortification decisions that are made only con-
sidering a single data dimension (i.e. flooding or mobility) fail to
capture the information needed to improve multi-dimensional ob-
jectives (i.e. number of possible trips, which is a function of flooding
and mobility). In other words, the solutions that are found through
methods that only use a single data source do not have large inter-
sections with those that usemultiple data sources.We cannot expect
to improve the climate resilience of the existing road network in a
cost-effective manner without specifically including information
on the spatial distribution of floods as well as the movements of
the population.

Our framework can be used to develop a decision support tool
to help policy makers and urban planners systematically identify
climate change-related risks to infrastructure. Spatially explicit data
or models characterizing the distribution, magnitude or probability
of relevant climate stresses provide information that can be used
both to estimate damages and set budgets, as well as to create proac-
tive management actions. Then, a decision support system could
evaluate a given plan in terms of multiple quantitative objectives.
Alternative recommendations generated using mathematical opti-
mization can then be compared and used to subsequently prioritize
investments. In particular, planners can easily examine the effects
of preparing for a given flood magnitude or improving infrastruc-
ture up to a certain sensitivity level by varying these inputs to the
decision support system.

One key component of our work is the emphasis on the interac-
tion between decision making and data. Indeed, without the access
to and incorporation of relevant and disaggregated data, decision
making tools will be limited in their capacity to provide relevant
recommendations. Our results highlight this point in the context of
recommending infrastructure upgrades to ensure mobility under
different flooding scenarios in Senegal, but this applies to many
sustainability related decision making applications.

Considering further data sources, we can extend and adapt our
work in a number of ways to further build climate change resilience
into development planning. One obvious refinement of our current
approach is to replace the “flood risk data” with a predictive module
that can take weather data as input and predict spatially explicit
flood extents and depths, which can then be used in combination
with climate change models to evaluate flood-related mobility im-
pacts under different climate change scenarios. Vulnerability to
other climate change-related hazards, such as droughts or wildfires,
can also be incorporated to develop a more complete picture of
climate change exposure and risks faced in different regions. Other
components of our framework that can be improved upon include
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mobility+flooding
175 roads repaired
1,787,627 trips recovered

(a) (b)

flooding
359 roads repaired
(126 common with “mobil-
ity+flooding”)
992,499 trips recovered

(c) (d)

mobility
179 roads repaired
(5 common with “mobil-
ity+flooding”)
52,060 trips recovered

(e) (f)

Figure 5: The roads chosen for improvement (left column) and corresponding increases in numbers of outgoing feasible trips
per zone (right column) for each of the three methods discussed in the text under a 5% budget. Each map in the right column
shows the difference in the number of infeasible outgoing trips per zone between the baseline scenario and the fortified
scenario.
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our definition of accessibility, which can be modified to weigh
rural regions more heavily or prioritize routes needed for the dis-
tribution of disaster relief resources (i.e. utilizing spatially explicit
population data). If ground truth travel demand data (which we
derive from CDR data) is unavailable, gravity or radiation models
of human mobility [12, 21] can be used as a substitute. In general,
modeled inputs can be useful to test “what if” scenarios. However,
access to ground truth data is essential to generate truly context-
specific recommendations in sustainability applications. Finally,
the optimization method we proposed can be improved upon to
find better solutions, whether through a mathematical formulation,
or through algorithmic improvements. Similarly the optimization
objective could be changed to balance multiple policy goals, or to
find solutions that are robust to uncertainties in the input data
sources.
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