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Abstract: Ecological distance-based spatial capture–recapture models (SCR) are a promising approach for si-
multaneously estimating animal density and connectivity, both of which affect spatial population processes and
ultimately species persistence. We explored how SCR models can be integrated into reserve-design frameworks
that explicitly acknowledge both the spatial distribution of individuals and their space use resulting from land-
scape structure. We formulated the design of wildlife reserves as a budget-constrained optimization problem
and conducted a simulation to explore 3 different SCR-informed optimization objectives that prioritized different
conservation goals by maximizing the number of protected individuals, reserve connectivity, and density-weighted
connectivity. We also studied the effect on our 3 objectives of enforcing that the space-use requirements of indi-
viduals be met by the reserve for individuals to be considered conserved (referred to as home-range constraints).
Maximizing local population density resulted in fragmented reserves that would likely not aid long-term population
persistence, and maximizing the connectivity objective yielded reserves that protected the fewest individuals.
However, maximizing density-weighted connectivity or preemptively imposing home-range constraints on reserve
design yielded reserves of largely spatially compact sets of parcels covering high-density areas in the landscape with
high functional connectivity between them. Our results quantify the extent to which reserve design is constrained
by individual home-range requirements and highlight that accounting for individual space use in the objective and
constraints can help in the design of reserves that balance abundance and connectivity in a biologically relevant
manner.

Keywords: connectivity conservation, conservation planning, functional connectivity, integer linear program-
ing, mathematical optimization, reserve design, spatial capture–recapture

Diseño de Reservas para Optimizar la Conectividad Funcional y la Densidad Animal

Resumen: Los modelos de captura-recaptura espacial (CRE) basados en distancias ecológicas son un método
prometedor para estimar la densidad animal y la conectividad, las cuales afectan los procesos poblacionales
espaciales y, en última instancia, la persistencia de las especies. Exploramos cómo se puede integrar a los modelos
CRE en los marcos de diseño de reserva que expĺıcitamente reconocen tanto la distribución espacial de los
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individuos como su uso del espacio resultante de la estructura del paisaje. Formulamos el diseño de reservas de vida
silvestre como un problema de optimización de presupuesto limitado y realizamos una simulación para explorar
3 diferentes objetivos de optimización informados por CRE que priorizaron diferentes metas de conservación
mediante la maximización del número de individuos protegidos; la conectividad de la reserva y la conectividad
ponderada por la densidad. También estudiamos el efecto sobre nuestros objetivos de hacer que los requerimientos
individuales de uso de espacio fuesen satisfechos por la reserva de manera que se pudiese considerar que los
individuos estaban protegidos (referidos como restricciones de rango de hogar). La maximización de la densidad
de la población local resultó en reservas fragmentadas que probablemente no contribuyan a la persistencia de
la población a largo plazo, mientras que la maximización de la conectividad produjo reservas que proteǵıan al
menor número de individuos. Sin embargo, la maximización de la conectividad ponderada por la densidad o la
imposición preventiva de restricciones de rango de hogar en el diseño de reservas produjo reservas compuestas
por conjuntos de parcelas mayormente compactas espacialmente que cubŕıan áreas de densidad alta en el paisaje
con alta conectividad funcional entre ellas. Nuestros resultados cuantifican la extensión a la cual el diseño de
reservas esta limitado por los requerimientos de rango de hogar individuales y resaltan que la consideración del
uso de espacio individual en el objetivo y limitaciones puede ayudar al diseño de reservas que equilibren la
abundancia y la conectividad de manera biológicamente relevante.

Palabras Clave: captura-recaptura espacial, conectividad funcional, conservación de la conectividad, diseño de
reservas, optimización matemática, planeación de la conservación, programación entera lineal
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Introduction

Habitat loss and fragmentation has accelerated as natural
land cover has been altered by humans, resulting in pop-
ulation declines and increased extinction risk for many
species (Krauss et al. 2010). One strategy for conserving
individual species or biodiversity in general is to designate
reserves (protected areas, wilderness areas, etc.) where
human land use is limited. One Aichi biodiversity target
established by the Convention on Biological Diversity
(2010) is to conserve at least 17% of terrestrial natural
areas by 2020 through well-connected reserve systems.
These reserves must protect sites that support the long-
term persistence of species by maintaining general eco-
logical functioning within the reserve. Largely, this has
been approached through the development of reserve-
design models that incorporate spatial attributes (i.e.,
reserve size, shape, connectivity, and proximity) that are
thought to be representative of species’ probabilities of
persistence over time (Williams et al. 2004).

Population density and functional landscape connec-
tivity are both central to population persistence (Tis-
chendorf & Fahrig 2000; Cushman et al. 2010). More-
over, methods that simultaneously estimate local densi-

ties and resistance to individual movement, such as the
ecological distance parameterization of spatial capture–
recapture models (SCR) (Royle et al. 2013), capture in-
terdependencies between density and connectivity that
could ultimately affect population viability (Cushman
et al. 2010). Specifically, SCR-based landscape connec-
tivity metrics (Sutherland et al. 2015; Morin et al. 2017;
Royle et al. 2018) describe the capacity of individuals
to move through the landscape with respect to their
distribution across the landscape and thus are valuable
objectives for a reserve-design optimization framework.
For example, density-weighted connectivity (Sutherland
et al. 2015; Morin et al. 2017), which can be derived
from population densities and functional connectivity
estimated from SCR models, was recently used as an opti-
mization objective in landscape conservation (Xue et al.
2017). These metrics provide an alternative to traditional
reserve-design approaches in which species abundance
and connectivity are decoupled and treated as separate
objectives (Williams et al. 2004).

Reserve designs must also explicitly address individual-
level resource requirements, which affect processes such
as habitat selection and population dynamics. Past ap-
proaches have used habitat area and quality (Berglund
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et al. 2012) or number of territories (Haight & Travis
2008; Önal et al. 2016) to estimate the number of in-
dividuals of a target species protected by purchasing
a given land unit. More generally, and even for non-
territorial species, home ranges are commonly used to
describe animals’ spatial resource requirements, delin-
eating areas used by individuals to access the resources
needed to survive, reproduce, and persist (Burt 1943).
Therefore, an underlying motivation for protecting en-
tire territories or home ranges is the assumption that
all resources in an individual home range are necessary
for survival or conversely that protecting only a portion
of a home range may jeopardize the persistence of in-
dividuals located there if the unprotected parts are lost
to land-cover change. One strategy could be to develop
reserve-design optimization procedures that explicitly se-
lect entire home ranges obtained using a home-range
estimation approach and select as many home ranges as
possible to increase the chances that conservation actions
taken in the near term result in population persistence in
the long run. However, this approach has not yet been
widely studied.

A wide variety of algorithmic methods are available
for systematically selecting reserve sites that optimize a
specified conservation goal. Many early methods were
iterative heuristics that construct a reserve by sequen-
tially selecting sites according to a rule (Williams et al.
2004), such as adding the site with the largest increment
in conservation value at each step. Other approaches,
including the widely adopted Marxan software, employ
randomized local search methods such as simulated an-
nealing (Ball et al. 2009) or evolutionary algorithms (Wu
et al. 2011). Such heuristic strategies typically provide
solutions quickly even for problems with large numbers
of candidate reserve sites, but they do not guarantee the
solutions are globally optimal in terms of the conserva-
tion objective (i.e., at least as good as any other feasible
solution). However, optimization problems formulated
as integer linear programs (ILPs) can be solved to opti-
mality using the branch and bound algorithm (Lawler &
Wood 1966). If an optimal solution is found, the decision
maker knows that no other set of actions would result
in a higher conservation benefit. If an optimal solution
is not found due to, for example, time constraints, the
algorithm returns the best solution that was found and
an optimality gap that quantifies the quality difference
between this solution and the unknown optimal solution.
These optimality guarantees come at the price of longer
runtimes, but it has been shown that many realistically
sized problem instances can be solved in a reasonable
amount of time on modern desktop computers (Önal
et al. 2016; Dilkina et al. 2017). The ILP formulations are
also remarkably flexible in terms of the conservation ob-
jectives and constraints that can be expressed. They have
been used to enforce a variety of reserve-design require-
ments such as representation, aggregation, compactness,

and connectivity (Beyer et al. 2016; Jafari et al. 2017)
and were also employed to maximize density-weighted
connectivity within a landscape (Xue et al. 2017).

We developed ILP formulations for budget-constrained
reserve design based on landscape metrics estimated us-
ing spatial capture–recapture, namely, realized density of
individuals of a target species (RD), potential connectivity
(PC) of the landscape, and density-weighted connectivity
(DWC) of the landscape. An ILP-based approach was pre-
sented in Xue et al. (2017) for dynamically maximizing
DWC over an entire landscape by modifying resistance
to animal movement between select pairs of adjacent
land units and by using sophisticated strategies for solu-
tion space sampling to scale up the method. In contrast,
we focused on maximizing different objectives enabled
by SCR-estimated values (RD, PC, and DWC) over only
the reserved land units rather than the whole landscape,
specifying that reserve quality be evaluated based only on
individuals or land units protected by the reserve design.
We also included requirements for explicitly enforcing
the protection of a specified area of the home ranges of
individuals in a reserve.

We applied our method to a simulated data set with
2 levels of habitat fragmentation to assess how different
conservation objectives may perform in the context of
reserve design in areas with different amounts of existing
fragmentation. Using our ILP formulations, we sought
provably optimal solutions to these reserve design prob-
lems. We studied the trade-offs of considering differ-
ent conservation objectives enabled by SCR-estimated
values and the effect of explicitly enforcing space-use
requirements as constraints for an in-depth analysis of
how these choices affect reserve outcomes. We sought
to highlight opportunities and practical considerations
for extending the utility of SCR models to systematic
conservation planning and to compare 2 biologically
relevant reserve-design strategies for obtaining compact
reserves with both high population density and high
functional connectivity.

Methods

We developed a mathematical optimization-based
method for selecting land parcels to incorporate into a
wildlife reserve for protecting a single simulated target
species. Without loss of generality, we assumed the land
parcels are individual pixels in a raster because irregu-
larly shaped parcels can be modeled as pixels that are
constrained to be purchased as a set. Each pixel is char-
acterized by the local density of individuals, resistance
to animal movement dependent on local landscape co-
variates, and a known purchasing cost. Density and resis-
tance can in practice be estimated from empirical data ob-
tained from capture–recapture studies (Sutherland et al.
2015). We assumed allocation of a fixed budget for
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simultaneously purchasing all pixels in the reserve de-
sign. We defined the most cost-effective reserve as the
collection of land parcels or pixels that provides the great-
est conservation benefit without exceeding the budget.
Specifically, we attempted to design reserves that maxi-
mize various metrics, including the number of protected
individuals and functional connectivity of the reserve.

Ecological Model of Space Use

Following Royle et al. (2013), we assumed that each in-
dividual in the target species population has an activity
center, which depends on the biology of the species,
but can be regarded as the centroid of an animal’s home
range or the centroid of an individual’s activities during
the time of sampling. We represented the landscape as a
raster of G pixels of unit area indexed by g or s , where
s is a pixel containing an activity center. The realized
population density N (s) of pixel s is then the number
of individuals whose activity centers are located within
that pixel. Each pixel g also has an associated move-
ment cost eα2z(g) related to the local resistance caused
by pixel-specific landscape covariate values z(g), where
α2 parameterizes the extent to which landscape structure
increases resistance to animal movement. The ecological
distance decol(g, s) between a pair of pixels is measured
as the sum of movement costs along the least-cost path
between them (Royle et al. 2013; Sutherland et al. 2015).
The probability that a pixel g is used by an individual
whose activity center is in pixel s is modeled using a
Gaussian kernel:

Pr
(
g, s

) = exp
[−α1d2

ecol

(
g, s

)]
, (1)

where α1 is 1/(2θ2) and θ is the radius of a home range
and the distance at which an individual could be detected
from their activity center. Thus, Pr(g, s) describes the
probability of use for pixels based on their distance from
an individual’s activity center (modulated by α1) and the
resistance to movement across pixels (modulated by α2),
resulting in an asymmetrical home-range kernel repre-
senting how individuals utilize space around their activ-
ity centers. Further details on SCR model assumptions
and estimation are in Royle et al. (2013) and Sutherland
et al. (2015).

Reserve Design Optimization with Integer Linear Programing

Given a fixed budget, the purchasing cost of each pixel,
and pixel-wise estimated local population densities and
use probabilities, the goal of the budget-constrained re-
serve design optimization problem is to select a set of pix-
els to purchase that has the greatest conservation value.
We formulated this problem as an ILP in which decisions
about selecting pixels are encoded in binary variables, the

limited budget is expressed as a mathematical constraint,
and the value of a set of purchasing decisions is quanti-
fied in terms of the number of protected individuals and
functional connectivity of the resulting reserve.

We defined a binary decision variable xg for each pixel
g in the landscape to encode the decision of whether it
is purchased for the reserve (i.e., if pixel g is selected,
xg = 1; otherwise, xg = 0). Given the purchasing cost
of each pixel cg , we also required that the total cost of
the selected pixels not exceed the budget B. A feasible
solution to the reserve design ILP is an assignment of
binary values to each xg variable such that the total pur-
chasing cost of those pixels with xg = 1 is within the
budget B.

We expressed our conservation goals as optimization
objectives to be maximized. Our first conservation objec-
tive was to maximize the number of individuals protected
by the reserve design. This is similar to the maximum
coverage site selection problem (Church & ReVelle 1974)
in which the goal is to protect as many conservation
targets as possible with finite resources. The full ILP for
maximizing the number of individuals within the reserve,
given by the protected realized density (RD) objective, is

max
∑
g∈G

xg · N
(
g
)
, (2)

s.t.
∑
g∈G

xg · cg ≤ B, (3)

xg ∈ {0, 1} ∀ g ∈ G. (4)

The expression in Eq. (2) sums the estimated local
population density over purchased pixels g indicated by
xg = 1, excluding density from unpurchased pixels with
xg = 0. This is based on the assumption that purchasing
a pixel g is sufficient to protect the N (g) individuals with
activity centers located within that pixel. The constraint
in Eq. (3) ensures the cost of the purchased pixels is
within budget B. Equation (4) constrains the xg variables
to binary values.

Another objective was to maximize the extent to which
conserved individuals can access the purchased pixels.
Reserve-design approaches that minimize functional dis-
tance between conserved sites often use least-cost path
modeling (Wang & Önal 2016), which provides a way
to characterize the impact of landscape features on ani-
mal movements and resulting population-level attributes,
such as genetic differentiation (Cushman & Lewis 2010).
We used potential connectivity (Sutherland et al. 2015;
Morin et al. 2017) as a landscape-scale measure of func-
tional connectivity. We define the protected potential
connectivity (PC) objective as

max
∑
g∈G

∑
s∈G

Pr
(
g, s

) · xg · xs. (5)
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This objective maximizes the accessibility of the re-
serve sites (for which xg = 1) to individuals inhabiting
protected pixels (for which xs = 1). The full ILP for max-
imizing PC combines the above objective function with
the constraints in Eqs. (3) and (4). Although Eq. (5) is an
accurate formulation of the PC optimization objective,
the expression involves products of decision variables xg

and xs , violating the requirements of a linear program,
but the objective can be easily linearized (see Support-
ing Information for details). This allows us to leverage
state-of-the-art linear programing solvers such as CPLEX
(IBM 2013), Gurobi (Gurobi Optimization 2018), or SCIP
(Achterberg 2009) that can solve problems with thou-
sands of decision variables efficiently thanks to decades
of algorithmic enhancements.

It may be preferable to evaluate a density-weighted
variant of connectivity, which favors conserving areas
that are highly accessible from sites with high local
abundance. This can be quantified by density-weighted
connectivity (Sutherland et al. 2015; Morin et al. 2017).
We defined the protected density-weighted connectivity
(DWC) objective as

max
∑
g∈G

∑
s∈G

Pr
(
g, s

) · xg · xs · N (s) . (6)

In other words, this objective maximizes the proba-
bility of selected pixels (for which xg = 1) being used
by individuals in the reserve (for which xs = 1) and is
weighted by the estimated local population density N (s).
We linearized the objective in Eq. (6) with the same strat-
egy we used for the PC objective.

Home Ranges and Individual Resource Needs

In the above formulations, individuals were considered
protected by a reserve design if their activity centers fell
within a purchased pixel. However, in finer-resolution
landscapes, the pixel containing an individual’s activity
center might encompass only a fraction of the area uti-
lized by the individual to meet daily and seasonal require-
ments for survival. If pixels outside the reserve become
inaccessible or undergo land-use change, individuals re-
lying on those areas for resources may face increased
mortality risk, even if their activity centers are located
within the reserve. Thus, it may be advantageous to ex-
plicitly enforce the protection of activity centers as well
as the surrounding high-use pixels to ensure that individ-
ual resource requirements are comprehensively met.

One mechanism for modeling space use by individuals
is the concept of home ranges. The size and geometry
of an individual’s home range are directly determined by
its movements about its activity center and thus depend
on resistance to movement exerted by the surrounding
landscape features. Thus, use probabilities in Eq. (1)
provide a means of delineating the home ranges of in-
dividuals based on how they utilize space. Following

Sutherland et al. (2015), given an activity center in pixel
s , we referred to the corresponding H% home range
kernel as the set of pixels g such that the use probability
Pr(g, s) ≥ (1 − H

100 ). The 95% home range is commonly
reported as delineating the entire home range of an in-
dividual (Dickson & Beier 2002), and we assumed that
protecting the entire home range would meet all of an
individual’s needs to survive and persist.

We augmented our optimization model to indicate
whether the full home range of an individual is pro-
tected by a set of purchased pixels. We used A95%(s)
to denote the set of pixels belonging to the 95% home
range with activity center at s , comprising any pixels
used by individuals at s with probability of at least 0.05.
We also defined another binary decision variable hs for
each pixel s in the landscape representing whether the
home range centered at pixel s is protected by the reserve
design. Then, if the pixels belonging to the set A95%(s)
are all purchased, the full 95% home range centered
at pixel s is conserved and we set hs = 1; otherwise,
hs = 0.

Under the assumption that only individuals whose full
home range is within the reserve can be considered pro-
tected, the full ILP for maximizing the protected realized
density objective with home-range constraints (RD-H)
becomes

max
∑
s∈G

hs · N (s) , (7)

s.t.
∑
g∈G

xg · cg ≤ B, (8)

xg ≥ hs ∀ g ∈ A95% (s) , ∀ s ∈ G, (9)

xg ∈ {0, 1} ∀ g ∈ G, (10)

hs ∈ {0, 1} ∀ s ∈ G. (11)

Equation (9) ensures that for any protected home
range (hs = 1), all pixels g in that home range are pur-
chased (xg = 1). Equation (11) ensures that the decision
variables hs take only binary values. We added these
constraints to the protected potential connectivity and
protected density-weighted connectivity maximization
problems as well to get the home-range constrained ver-
sions (PC-H and DWC-H), whose objective functions are
as follows:

max
∑
g∈G

∑
s∈G

Pr
(
g, s

) · xg · hs, (12)

max
∑
g∈G

∑
s∈G

Pr
(
g, s

) · xg · hs · N (s) . (13)
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(a) (b)

Figure 1. Simulated landscapes
showing (a) high and (b) low
habitat fragmentation, where
higher values of covariate z(g)
correspond to areas with less
favorable habitat for a
hypothetical species.

Simulated Landscape Experiments and Evaluating Reserve
Designs

We created simulated landscapes with the type of esti-
mated population density and landscape resistance data
that would be used in practice as inputs to the reserve
design problem. We created 2, 40 × 40 pixel gridded
landscapes over which we simulated a continuous land-
scape covariate at 2 levels of habitat fragmentation (low
or high) (Fig. 1) approximating levels of fragmentation
found for protected areas in the literature. We kept to-
tal amount of habitat constant (see Supporting Informa-
tion for details). We simulated data for a population of
N = 100 individuals distributed over the landscape ac-
cording to an inhomogeneous point process; low values
of the covariate corresponded to greater local population
densities. We modeled animal movement in our land-
scapes after the SCR model (Royle et al. 2013; Sutherland
et al. 2015) in which the movement cost through a pixel
g with covariate z(g) is given by eα2z(g) and the ecological
distance between pixels g and g′ is calculated by least-
cost path. We set α2 = 2.25 (Morin et al. 2017). The use
probabilities are related to ecological distance as shown
in Eq. (1); parameter α1 = 2.85 and α1 = 1.36 for the low
and high fragmentation landscapes, respectively, result-
ing in mean home ranges of 89 and 95 pixels for a hypo-
thetical species. We simulated spatial capture–recapture
data with a fixed detector array and then estimated pixel-
wise realized densities N̂ (s) and use probabilities P̂r(g, s)
with the SCR ecological distance model (Royle et al.
2013) (details in Supporting Information).

For each landscape, we formulated ILPs as described
above based on the 3 objective functions (RD, PC, and
DWC) with and without home-range constraints (95%
home range or only activity center respectively). All
pixels were assigned unit costs, although these could
be generalized to reflect different land values or pixel
availabilities. We varied the available budget from 0 to
1600 land units in increments of 100, resulting in 204
optimization problems. The resulting ILPs were solved
using IBM ILOG CPLEX Studio version 12.6 in <5 minutes
per problem. We evaluated each solution in terms of the
design’s protected realized density, potential connectiv-

ity, and density-weighted connectivity. Additionally, we
evaluated the designs optimized without the home-range
constraints against the 95% home-range area requirement
to determine how disregarding home-range requirements
might compromise reserve design quality. For example,
we recomputed the protected realized density of the
design obtained by maximizing RD without home-range
constraints, but in this case only included individuals
with complete home-range coverage when calculating
protected realized density. This yields a more conserva-
tive estimate of the protected density than the objective
value for maximizing RD without home-range constraints
by incorporating the assumption that individuals whose
95% home ranges are not fully protected by the reserve
are not adequately protected by the design. Finally, we
compared the spatial composition of the designs in terms
of percent overlap between designs obtained by maximiz-
ing different objectives and by calculating the number of
patches and aggregation index of the designs with the
SDMTools R package (VanDerWal et al. 2014).

Results

Conservation Objectives and Outcomes

We obtained optimal solutions for all 204 optimization
problems. This meant each reserve quality measure was
greatest when the corresponding objective was max-
imized (Fig. 2); for example, protected realized den-
sity was greater for designs maximizing RD than for
those maximizing PC or DWC. Without imposing home-
range constraints, the purely density-driven reserve de-
signs had the lowest protected potential connectivity,
whereas the purely connectivity-driven reserve designs
protected the lowest realized density out of solutions
obtained using the 3 objectives. Meanwhile, maximiz-
ing the DWC objective resulted in a compromise be-
tween maximizing the number of protected individuals
and maximizing the potential connectivity between the
purchased pixels.

The spatial configuration of reserves obtained by dif-
ferent optimization objectives was dramatically different.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 2. Protected realized density (a and b), protected potential connectivity (c and d) and protected
density-weighted connectivity (e and f) of reserves obtained by maximizing either realized density (RD), potential
connectivity (PC), or density-weighted connectivity (DWC) with different land-unit budgets. Results are for a
simulated landscape with high habitat fragmentation and a simulated landscape with low habitat fragmentation.

Maximizing RD produced reserves with the lowest aggre-
gation index and the greatest number of patches (Table 1
& Fig. 3). Reserves maximizing PC always had the highest
aggregation index and typically had the lowest number of
patches (Table 1). Maximizing the DWC objective yielded
reserves with intermediate aggregation index values and
a comparable number of patches to the PC-optimal re-
serves (Table 1). The different objectives also prioritized

different parts of the landscape for protection. Reserves
maximizing RD had relatively little overlap with those
maximizing PC, despite the existence of a positive corre-
lation between high-density and high-connectivity areas
within our simulated data set. The DWC-optimal reserves
overlapped significantly with both RD-optimal and PC-
optimal reserves, partly by protecting nearly all of the
pixels important to both RD and PC.
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Table 1. Number of reserve patches and aggregation index (AI) as calculated by SDMTools for optimal reserves obtained by maximizing realized
density (RD), potential connectivity (PC), or density-weighted connectivity (DWC) without home-range constraints at select budgets and percent
overlap between optimal reserves obtained for each objective.

Maximize RD Maximize PC Maximize DWC Overlap (%)Fragmentation
level & budget
(land units) no. patches AI no. patches AI no. patches AI RD–PC RD–DWC PC–DWC RD–PC–DWC

High
400 22 72.60 2 95.65 2 91.57 34.00 63.00 49.00 29.25
600 22 77.32 2 95.57 3 92.70 40.83 63.17 62.17 36.17
800 14 80.10 2 95.33 2 92.68 51.25 65.38 82.25 50.38

1000 5 86.21 1 96.75 2 93.80 62.00 75.00 84.60 61.20
1200 1 91.42 1 98.20 1 95.75 73.67 84.50 84.58 69.17

Low
400 14 79.71 1 99.47 1 95.26 54.50 67.25 85.25 54.00
600 13 79.84 1 99.22 3 96.61 51.67 58.50 89.83 51.17
800 13 82.96 2 97.54 3 96.18 50.63 56.88 90.88 50.63

1000 7 85.43 1 98.40 5 96.07 60.50 69.30 90.40 60.40
1200 4 88.50 3 98.15 2 96.31 70.92 78.17 90.75 69.08

(a) (b) (c)

(e) (f) (g)

(i) (j) (k) (l)

(h)

(d)

Figure 3. Reserve designs for simulated landscapes with high and low fragmentation obtained by maximizing the
protected realized density (RD) in terms of total number of protected target species individuals in the reserve
(a–d), potential connectivity (PC) of the reserve (e–h), and density-weighted connectivity (DWC) of the reserve
(i–l) with a budget of 400 land units and either no home-range constraints or 95% home-range constraints.

Individual Resource Requirements

We compared reserves obtained assuming that purchas-
ing the activity center is adequate to protect an individual
with those obtained with the 95% home-range require-
ments. Adding home-range constraints created more ag-
gregated reserve designs by requiring the incorporation
of pixels surrounding activity centers into the design.

This was especially evident in reserves maximizing the
RD objective: without 95% home-range constraints these
designs were patchy because there is nothing inherent in
density that naturally provides for connectivity or aggre-
gates designs. With home-range constraints, the designs
had far fewer patches (Fig. 3). Moreover, maximizing den-
sity through the RD objective and including 95% home-
range constraints achieved very different designs from
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combining density and connectivity by using the DWC
objective alone (without home-range requirements).

Imposing home-range constraints on the reserve-
design process made it more challenging to achieve re-
serve designs with high objective value scores, reflecting
the increased cost of protecting each individual’s home
range compared to just their activity center. For any given
budget level, the optimal reserve design objective value
(for RD, PC, and DWC) was lower with home-range con-
straints than without them (Fig. 4, 95% vs. activity center)
because only the density or connectivity from fully con-
served 95% home ranges counts toward the objective
when home-range requirements are considered. When
reevaluating the reserve designs obtained without the
home-range constraints in terms of their objective values
when the 95% home range was used as the criterion for
protection, designs obtained without home-range con-
straints had drastically lower protected RD, PC, and DWC
over only the fully protected home ranges, particularly at
low budget values (Fig. 4, activity center reevaluated with
95% vs. activity center). The reduction in reserve-quality
measures was substantially greater compared with when
home-range area constraints were incorporated in the
optimization (Fig. 4, activity center reevaluated with 95%
vs. 95%).

Discussion

Given the high economic and political costs associated
with designing reserves, it is important to test sensi-
ble reserve design objectives that are related to popu-
lation persistence. Our reserve designs considered both
local population density and connectivity objectives with
the goal of designing reserves that protect individuals
and provide functional connectivity for those individu-
als. Aspects of species behavior such as resource selec-
tion and movement determine how individual animals
interact with the surrounding landscape and thus influ-
ence both short-term survival of individuals and long-
term persistence of the population. Our results showed
that designing reserves based solely on population den-
sity can result in fragmented, patchy designs with low
connectivity between reserve parcels, whereas designs
that maximize only functional connectivity may achieve
a small protected population size. Greater amounts of
patch isolation can deter long distance dispersal (Fahrig
2007; Cote et al. 2017) and result in decreased population
sizes, inbreeding, and genetic drift when both immigra-
tion and emigration are limited (Keller & Waller 2002).
This is of particular concern when areas excluded from
the reserve could undergo land-use changes that could
further increase resistance to movement. Although re-
sistance to dispersal may differ from resistance to daily
home range movements (Keeley et al. 2017), failed dis-
persal attempts through a dangerous matrix may alter

the learned or evolved behavior of future dispersers,
effectively reducing the connectivity or magnifying the
isolation of a reserve network over time (Baguette &
Van Dyck 2007). Instead, maximizing an objective that
combines both density and connectivity, or preemptively
imposing home-range constraints on the reserve design
are 2 ecologically meaningful strategies that yield reserves
composed of spatially compact sets of parcels covering
high-density areas in the landscape with high functional
connectivity between them.

Density-weighted connectivity fuses functional con-
nectivity with local population densities in an ecolog-
ically meaningful manner, rather than treating density
and connectivity as 2 separate objectives in a reserve-
design optimization framework. Using DWC as a con-
servation objective ensures that the resulting reserved
parcels offer the most utility to the target population or
that the probability of the conserved areas being used
by protected individuals is maximized. Density-weighted
connectivity is similar to the “realized connectivity” quan-
tity described by Watson et al. (2011), which has been
linked to metapopulation persistence. Although we do
not explicitly consider population dynamics or dispersal
distances in this work, the DWC objective could eas-
ily be extended to this setting, for instance, by only
counting connectivity between protected sites that are
close enough in ecological distance for dispersal. Addi-
tionally, both the connectivity-based objectives in our
model naturally result in compact reserves by maximiz-
ing the total probability of species moving between se-
lected sites or equivalently minimizing the functional
distance between selected sites (Wang & Önal 2016).
When the stronger condition of contiguity is required for,
say, a terrestrial species, the potential connectivity and
density-weighted connectivity metrics can be modified to
count only connectivity between sites that have a fully-
protected path between them (Önal et al. 2016; Jafari
et al. 2017).

Our model allowed us to examine the impact of de-
signing reserves with or without explicit provisions for
individual resource needs. In early reserve-design models,
species occurrence was largely treated as static and the
patches or sites under consideration were much larger
than average home ranges (Cabeza & Moilanen 2001). To
estimate landscape resistance from individual movement
using SCR, we used relatively fine-resolution landscapes
in which it is more realistic to model individuals as using
multiple sites. Our model can accommodate varying the
area or fraction of the home range to use more or less
conservative thresholds (e.g., 95% vs. 85% home-range
extents) for whether or not an individual is considered
protected by the reserve design. This can be a useful
framework for conservation policy makers tasked with
deciding how much habitat to protect in order to sup-
port a given population. Reserves designed with home-
range constraints exchange the capacity to cover a large
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4. Protected realized density (a and b), protected potential connectivity (c and d), and protected
density-weighted connectivity (e and f) of reserves obtained with different land-unit budgets by maximizing
protected realized density (RD), potential connectivity (PC), or density weighted-connectivity (DWC) respectively
without home-range constraints (activity center), with 95% home-range constraints (95%), or without home-range
constraints and reevaluating RD, PC or DWC in terms of only the full home ranges in the design (activity center
reevaluated with 95%).

population for potentially greater certainty that a smaller
population will persist. However, reserves designed with-
out these constraints could overestimate their conserva-
tion value, which could be undesirable for a risk-averse
planner. Our approach makes these trade-offs clear and

thus helps decision makers compare a range of alterna-
tives that can be obtained by varying the home-range-
extent requirement. Conceivably, then, the framework
we proposed could be implemented as part of a study
focused on an umbrella species.
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Our approach could potentially be extended to en-
compass more varied reserve design goals. For exam-
ple, one can address the design of reserves for multiple
species using techniques from multi-objective optimiza-
tion. Given estimated pixel-wise densities and pixel-to-
pixel use probabilities for several target species within
the landscape of interest, one can assess the objective
value (such as DWC) of a given reserve design for each
species separately, as we did for our single hypothetical
target species. Optimizing the reserve design for multiple
species simultaneously requires a weighting or ranking of
target species in order of conservation priority. For a rel-
atively small number of target species, one can construct
an optimization objective as a weighted sum of objectives
for each species (Dilkina et al. 2017). With linear objec-
tives and constraints, the same powerful ILP solver tools
can be applied to this modified problem. Alternatively,
spatial contiguity (Jafari et al. 2017) could be incorpo-
rated in addition to home-range constraints. Our frame-
work for reserve design provides decision makers with
a tool for obtaining optimal designs that protect ecolog-
ically significant space-use patterns at the individual and
landscape scales.
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