
Budget-Constrained Demand-Weighted Network Design
for Resilient Infrastructure

Amrita Gupta
School of Computational Science & Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

agupta375@gatech.edu

Bistra Dilkina
Department of Computer Science
University of Southern California

Los Angeles, CA 90089, USA
dilkina@usc.edu

Abstract— Our work is motivated by an important network
design problem in climate adaptation. As floods become more
frequent and severe due to climate change, it is increasingly
crucial that road infrastructure be strategically upgraded to
support post-disaster recovery efforts and normal functionality.
We focus on the problem of allocating a fixed budget towards
restoring edges to maximize the satisfied travel demand between
locations in a network, which we formalize as the budget-
constrained prize-collecting Steiner forest problem. We prove
that the satisfiable travel demand objective exhibits restricted
supermodularity over forests, and utilize this property to design
an iterative algorithm based on maximizing successive modular
lower bounds for the objective that finds better solutions than
a baseline greedy approach. We also propose an extremely fast
heuristic for maximizing modular functions subject to knapsack
and graph matroid constraints that can be used as a subroutine
in the iterative algorithm, or as a standalone method that
matches the greedy baseline in terms of quality but is orders
of magnitude faster. We evaluate the algorithms on synthetic
data, and apply them to a real-world instance of retrofitting
the Senegal national road network against flooding.

I. INTRODUCTION

Natural and man-made disasters damage transportation
networks, telecommunications and the power grid, leading to
loss of service and hindering disaster response. As extreme
weather events become increasingly frequent under climate
change, damage to these critical infrastructures is projected
to increase dramatically–e.g. six-fold in the EU by 2050 [1].
This has spurred governments, policymakers and researchers
to seek out technologies and strategies to reduce the con-
sequences of critical infrastructure system failures. Possible
actions include structural adaptation measures like changing
road surface composition to better withstand weather-related
stress, as well as management adaptation measures like
strategically positioning repair crews to quickly restore lost
power [2]. The associated network design, planning and
scheduling problems have also inspired AI researchers to
develop effective and scalable techniques that can be applied
to these critical, real-world problems.

In this paper, we focus on the problem of upgrading a
subset of key components in a road network to minimize
service disruption in the event of an earthquake, flood, or
other natural hazard. Road infrastructure plays a vital role
immediately before, during, and shortly after disasters in
planning and conducting zone-based evacuations and en-

abling first responders to access affected populations. This
has motivated a great deal of research on variations of the
pre-disaster transportation network preparation problem [3],
e.g. to strategically upgrade roads such that evacuation paths
are protected [4], or such that the average travel time of emer-
gency response vehicles to service points is minimized [5].
There is also a growing body of work in post-disaster road
network restoration, where the goal is to optimize the order
in which to clear roads and the positioning of equipment to
enable evacuations [6] or distribute emergency supplies [7].

However, far less attention has been paid to systematically
fortifying national roads to support the large-scale, normal
functioning of the network after a disaster. Road networks
enable the distribution of goods and resources and facilitate
overland trade flows that are integral to economic activity.
Furthermore, restoration times for road infrastructure are typ-
ically longer than for other infrastructure systems, meaning
that vulnerable areas connected to the larger network by only
a few roads may remain inaccessible for months if those
roads fail. For example, roads between the Mozambican
capital city Maputo and the rest of the country remained
unusable for nearly a year after devastating flooding in 2000,
causing economic growth to come to a halt [8].

We attempt to fill this gap in the literature and focus on
the problem of finding a pre-disaster road fortification plan
that ensures that a regional population’s travel needs are
still met as much as possible under likely disaster scenarios.
In the post-disaster period, affected populations begin to
return to normal activity, using alternative travel routes if
necessary even if they are longer or more congested than
original routes. First, we model this problem as an instance
of Budget-Prize-Collecting Steiner Forest (Budget-PCSF):
given a graph, pairs of vertices that need to be connected and
travel demand between them, and edge repair costs, we select
a subset of edges to repair in order to maximize the satisfied
travel demand while respecting a budget constraint1. In the
regular Prize-Collecting Steiner Forest (PCSF) problem [9],
the goal is to minimize the combination of edge purchasing
costs and incurred penalties for failing to connect designated
pairs of vertices. However, in the disaster preparedness

1All code can be found at https://github.com/amritagupta/
budget-pcsf-semigradient-ascent.

setting, it may be undesirable to combine the financial costs
of upgrading roads and the socioeconomic costs of failing
to connect certain location pairs into a single optimization
objective. Moreover, government agencies and development
initiatives typically must operate within strict budget plans,
and hence it is necessary to include a hard budget constraint.

Next, we prove that the objective function of Budget-
PCSF exhibits the property of restricted supermodularity,
with positive implications for algorithm design. Specifically,
we show that a modular profit function for connecting pairs
of vertices exhibits the property of compounding gains when
restricted to the set of forests in the graph (the graph
matroid). We then demonstrate how to adapt recent work
on constrained supermodular maximization [10, 11] to the
budget-constrained, graph matroid-restricted supermodular
setting using a tree-sampling approach. This allows us to
extend ideas from [12] to develop an iterative algorithmic
approach where at each step we derive a modular lower
bound to the Budget-PCSF objective that we maximize while
respecting the budget and matroid constraints. We also pro-
pose a novel heuristic algorithm (Knapsack-Repair) for
maximizing a modular lower bound subject to a budget and
a matroid constraint, based on optimally solving a knapsack
integer linear program (ILP) followed by a greedy repair step
to fix any cycles introduced into the solution.

We demonstrate experimentally that iteratively maximiz-
ing successive modular lower bounds either greedily or with
our proposed heuristic consistently finds solutions of much
better quality than a greedy baseline (the fastest algorithm
previously applied to Budget-PCSF known to the authors),
while also typically being faster. We also find that running a
single iteration of our approach using Knapsack-Repair
performs as well as the greedy baseline, but it is 100-5000
times faster. Finally, we apply our approaches for solving
Budget-PCSF to a large-scale network design problem for
retrofitting the national highway system in Senegal in prepa-
ration for flooding scenarios of different severities.

We first describe Budget-PCSF as it relates to road in-
frastructure resilience, review the literature for algorithmic
approaches to solving this problem, and prove the restricted
supermodularity of its objective. Section III describes how
to compute modular lower bounds for the Budget-PCSF
objective, how to maximize these using either a greedy or our
proposed ILP-based algorithm, and how to wrap this step into
an iterative procedure. Section IV presents our experimental
results on synthetic and real-world instances.

II. BUDGET PRIZE-COLLECTING STEINER FOREST

A. Problem Definition

We are given an undirected, uncapacitated graph G =
(V,E), where edges represent road segments, and vertices
represent junctions or endpoints of the road segments. We
also have an OD (origin-destination) matrix whose entries
(i, j) contain the expected number of trips from vertex i
to vertex j over the road network, which we refer to as
the travel demand from i to j. Travel demands need not
be symmetric, and we assume that as long as a path exists

in the network between vertices i and j, the travel demand
between them in both directions is satisfied. This constitutes
a profit function p(u, v) : V × V → R+ for connecting
pairs of vertices. We emphasize that in our formulation of
Budget-PCSF, we use these demands to set pairwise profits
on vertices to be maximized, rather than setting penalties
to be minimized as is typical in the PCSF problem. We
are also given a cost function c : E → R+ on the edges,
and a fixed budget B. These edge costs reflect the projected
cost of satisfactorily upgrading a given road segment to
ensure it withstands a given flood scenario. The planner’s
task is to decide which road segments to upgrade through
the allocation of the budget B, such that the maximum travel
demand is satisfied. This leads to the following problem:

Given: Graph G = (V,E), a non-negative edge cost
function c : E → R+, a budget B, pairs of
vertices P = {(u1, v1), (u2, v2), . . . , (uk, vk)} to
be connected, and a non-negative profit function
p : P → R+ for successfully connecting vertex
pairs in P

Find: A forest F ⊆ E such that
∑

e∈F c(e) ≤ B and∑
(u,v)∈Q p(u, v) is maximized, where Q ⊆ P is

the set of vertex pairs connected by edges in F .
We specify that the selected road segments should form
an acyclic subgraph (a forest). Although a cyclic subgraph
would be a feasible solution with respect to our goal of max-
imizing satisfied travel demand, we note that the presence of
cycles in the solution means there are multiple edge-disjoint
paths between the same pairs of vertices, providing no benefit
in terms of additional connectivity but consuming more of
the budget than needed. Hence, we can restrict our search to
solutions that form a forest in G.

B. Related Work

Closely related to our graph optimization problem, the
prize-collecting Steiner forest (PCSF) problem asks the fol-
lowing question: given an undirected graph G = (V,E),
a non-negative edge cost function c : E → R+, pairs of
vertices P = {(u1, v1), (u2, v2), . . . , (uk, vk)}, and a non-
negative penalty function π : P → R+, which subgraph
F of G minimizes the cost of edges in F plus the sum of
penalties for pairs in P that are not connected by F ? This
problem has been studied extensively and applied in domains
as diverse as molecular biology for discovering signaling
pathways in a cellular interactome [13], and backbone dis-
covery in transportation networks [14]. The PCSF problem
was shown to be APX-hard [15], and has a 3-approximation
algorithm based on the primal-dual method [9]. [16] devised
an O(|V |2/3 · 2 · log|V |)-approximation algorithm for the
Quota-PCSF with uniform profits, where the goal is to find a
minimum cost forest such that the satisfied demand is at least
Q. However, despite the practical relevance of the budget-
constrained variant of PCSF, it has received relatively little
attention, and there is no known approximation algorithm for
Budget-PCSF known to the authors.

Existing approaches for solving Budget-PCSF largely rely
on computationally heavy approaches. [17, 18] propose

Fig. 1: Restricted supermodularity. f(S ∪ {eBC})− f(S) ≤
f(T ∪ {eBC}) − f(T), showing compounding gains. How-
ever, f(T ∪ {eAC}) − f(T) � f(U ∪ {eAC}) − f(U)= 0,
showing restricted supermodularity.

mixed integer programming formulations for this problem
and demonstrate results on a graph with 23 vertices and 34
edges representing the Ohio interstate system. [19] propose
a bi-objective integer programming model to solve a closely
related problem to Budget-PCSF, in which the goal is to
maximize the satisfied demand (where demand at an origin
is satisfied if a path exists to at least one of a set of
predefined destinations) while minimizing travel time be-
tween origin-destination pairs as a second objective with
application to retrofitting bridges along critical routes for
earthquake response. In contrast, we consider the setting in
which the demand is specified between each pair of vertices.
In general, flow-based integer programming formulations
are known to encounter challenges when scaling to larger
instances of these families of network design problems and
can be particularly sensitive to the number of OD-pair flow
variables. Instead, in this work we focus on developing scal-
able heuristic approaches. For example, in [20] the authors
employed a simple greedy algorithm to solve Budget-PCSF.

C. Restricted Supermodularity

In recent work, results about the modularity of objective
functions have played an instrumental role in designing
effective algorithmic approaches to solving network design
problems in domains such as robotic motion control [21]
and sensor placement [22]. We now turn our attention to
an analysis of the objective function in Budget-PCSF, and
specifically prove that it is restricted supermodular over
subsets of edges that form forests. A set function f(S) :
2E → R is supermodular if it exhibits the property of
compounding gains, or formally if ∀S ⊂ T ⊂ E and
∀e ∈ E \ T :

f(S ∪ {e})− f(S) ≤ f(T ∪ {e})− f(T) (1)

However, when the above property holds only over a col-
lection of subsets of E, f is referred to as a restricted
supermodular function. The analogous property of restricted
submodularity for functions with diminishing returns was
first described by [23] who used it to analyze a greedy
algorithm for the Steiner tree problem.

Let S ⊆ 2E denote a set of edges selected from graph G.
We aim to maximize the following objective function subject
to a knapsack (budget) constraint:

f(S) =
∑

(u,v)∈Q

p(u, v) (2)

where Q ⊆ P is the set of vertex pairs connected by edges
in G(S), the graph induced by edges in the set S, and

p(u, v) is the profit function described earlier.

Proposition 1:f(S) is monotone non-decreasing.
This is trivial since augmenting the set S with another
element (edge) can never reduce the number of pairs of
vertices connected in G; and the profit function p is non-
negative.

Proposition 2: f(S) is supermodular when restricted to the
set of forests F on G (the graph matroid).
A first intuition regarding the relationship between f and
the structure of subsets on which it is defined, is that there
must exist a set S that maximizes f and contains no cycles–
i.e. G(S) is a forest. As described earlier, any solution
containing a cycle would contain multiple edge-disjoint paths
between the same pair of vertices, providing no additional
connectivity but consuming more of the budget than strictly
necessary. Therefore, we can restrict our search to forests.

A second intuitive notion is that connectivity builds upon
itself. See, for instance, the graph in Figure 1. If edge
A–B is restored, then demand between A and B can be
satisfied. The same holds for edge B–C. However, when
both A–B and B–C are restored, in addition to restoring
connectivity between A and B and between B and C, we
get the extra benefit of connecting A and C. This phe-
nomenon of compounding gains or increasing differences
is the characteristic feature of supermodular functions, and
has been observed and leveraged in various other settings,
such as influence maximization under the linear threshold
model with edge addition [11]. Figure 1 also illustrates the
concept of restricted supermodularity. When attempting to
augment set U by adding edge eAC that forms a cycle
with respect to the other edges already in U , we have
f(U ∪ {eAC} − f(U) = 0, although adding eAC to a
subset of U could have strictly increased f ; in this case
the gain associated with eAC was diminished, violating the
requirement for general supermodularity. A formal proof that
f is restricted supermodular function follows.

Proof: For notational convenience, let Let G(u;S) be
the connected component in G(S), the subgraph induced by
edges in the set S, that contains vertex u. Let fG(u;S) be
the total profit between pairs of vertices in the connected
component G(u;S). Consider a subset of edges S ⊂ E and
two different edges e1 = (ue1 , ve1) and e2 = (ue2 , ve2) in
E\S. Let ∆ef(S) := f(S ∪ {e})− f(S). We want to show
that ∆e2f(S ∪ {e1}) ≥ ∆e2f(S) whenever G(S ∪ {e1, e2})
contains no cycles. (We already provided a counterexample
in Figure 1 showing that this is not true when S contains a
cycle.) There are 3 possible cases:

a) 1. e2 has no endpoints in G(S ∪ {e1}).: Then e2
also has no endpoints in G(S), so

∆e2f(S) = f(S ∪ {e2})− f(S)

= fG(ue2 ;S ∪ {e2})− fG(ue2 ;S)

= fG(ue2 ;S ∪ {e2})− 0 = fG(ue2 ; {e2})

∆e2f(S ∪ {e1}) = f(S ∪ {e1, e2})− f(S ∪ {e1})
= fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})
= fG(ue2 ;S ∪ {e1, e2})− 0

= fG(ue2 ; {e2}) = ∆e2f(S)

b) 2. e2 has exactly 1 endpoint in G(S ∪ {e1}).: Let
ue2 be the endpoint of e2 in G(S ∪ {e1}). Either ue2 is in
the same connected component as the endpoints of e1, or
it is in a different connected component of G(S ∪ {e1}). If
ue2 ∈ G(ue1 ;S ∪ {e1}), there are two possibilities–either
ue2 is a vertex in G(S) or ue2 = ve1 . In the former case:

∆e2f(S) = f(S ∪ {e2})− f(S)

= f(ue2 ;S ∪ {e2})− f(ue2 ;S)

= {flow G(S)↔ ve2}

∆e2f(S ∪ {e1}) = f(S ∪ {e1, e2})− f(S ∪ {e1})
= fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})
= {flow G(S)↔ ve2}+ {flow ve1 ↔ ve2}
≥ {flow G(S)↔ ve2} = ∆e2f(S)

In the latter case:

∆e2f(S) = fG(ue2 ;S ∪ {e2})− fG(ue2 ;S)

= {flow ue2 ↔ ve2}

∆e2f(S ∪ {e1}) = fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})
= {flow G(ue1 ;S ∪ {e1})↔ ve2}
≥ {flow ue2 ↔ ve2} = ∆e2f(S)

If, on the other hand, ue2 /∈ G(ue1 ;S ∪ {e1}) then:

∆e2f(S) = f(S ∪ {e2})− f(S)

= fG(ue2 ;S ∪ {e2})− fG(ue2 ;S)

∆e2f(S ∪ {e1}) = f(S ∪ {e1, e2})− f(S ∪ {e1})
= fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})
= fG(ue2 ;S ∪ {e2})− fG(ue2 ;S) = ∆e2f(S)

c) 3.e2 has both endpoints in G(S ∪ {e1}).: Since we
restrict ourselves to subsets of E that do not form cycles,
the endpoints of e2 must be in two separate connected
components both in G(S) and G(S ∪ {e1}). Either e2
links two connected components that do not contain the
endpoints of e1—in this case ∆e2f(S ∪ {e1}) = ∆e2f(S).
Otherwise, e2 links one connected component containing the
endpoints of e1 with another connected component–in this
case ∆e2f(S ∪ {e1}) ≥ ∆e2f(S).

III. BUDGET-CONSTRAINED RESTRICTED
SUPERMODULAR MAXIMIZATION

With the results of Section II-C, we can approach Budget-
PCSF as maximizing a monotone non-decreasing, restricted
supermodular function over the independent sets of a graph
matroid, subject to a knapsack constraint. There is very
limited work to date on maximizing restricted submodular

or supermodular functions subject to additional constraints.
In [23], the authors studied the implications of restricted
submodularity over forests for a greedy algorithm for the
minimum Steiner tree problem, in which there are no cardi-
nality or knapsack constraints for acquiring edges. In [24],
the authors studied maximizing a function that is submodular
when restricted to the set of solutions satisfying a cardinality
constraint. In contrast to these works, in Budget-PCSF the
supermodularity of the objective function holds over the
independent sets of a matroid, while there is an additional,
separate knapsack constraint on edge selection.

In this work, we treat both the graph matroid structural
restrictions and the knapsack constraint as hard constraints.
Even though a solution violating the matroid restriction is not
strictly infeasible, the violations degrade the supermodularity
property that serves as the basis of our algorithm design.
Therefore, we aim to maximize a supermodular function
subject to a knapsack and a matroid constraint. [10] provide
bounds for maximizing a supermodular function subject to
a cardinality constraint (equivalent to knapsack constraints
with unit or uniform edge costs) or a matroid constraint,
but not both. They showed that a simple greedy algorithm
that adds items in order of maximum benefit with respect
to the current set achieves a (1− κf) approximation bound,
where κf is the supermodular curvature of function f . It
is unclear whether the same bound holds for maximizing
supermodular functions subject to a knapsack constraint,
rather than a cardinality constraint; or for the combination
of a knapsack and a matroid constraint, as we have here.
[20] employed a similar greedy algorithm to [10] to solve
Budget-PCSF, in which items are selected in order of benefit-
cost ratio. However, as we will show, this greedy algorithm
scales poorly with problem size.

A. Modular Lower Bounds for Restricted Supermodular
Functions

Instead of relying on a simple cost-benefit greedy criterion,
we implement an iterative heuristic based on semigradient
ascent [12], which is based on computing modular lower
bounds (MLB) for the objective function f and then ef-
ficiently maximizing the MLB. This theoretical framework
was recently adapted by [11] to supermodular maximization
with a cardinality constraint for influence maximization in
graphs using edge addition.

Supermodular functions have discrete subdifferentials that
can be used to construct tight MLBs [10]. Given a set
function f and a set S, the subdifferentials of f at S are all
vectors y such that f(S)−y(S)+y(S′) ≤ f(S′) ∀S′ ∈ E; a
subgradient is one such vector y. Therefore, a subgradient es-
sentially provides a lower bound for the function f evaluated
on set S′. In [10], the following two discrete subgradients
for supermodular functions are proposed:

y̌(j) =

{
f(j|S \ {j}), if j ∈ S
f(j|∅), otherwise

(3)

and,

ŷ(j) =

{
f(j|E \ {j}), if j ∈ S
f(j|S), otherwise

(4)

These lead to the following two modular lower bounds for
the function f at a new solution S′ using current solution S:

m̌S(S′) = f(S)−
∑

j∈S\S′
f(j|S \ j)+

∑
j∈S′\S

f(j|∅) ≤ f(S′)

(5)

m̂S(S′) = f(S)−
∑

j∈S\S′
f(j|E\j)+

∑
j∈S′\S

f(j|S) ≤ f(S′)

(6)
The terms f(j|S \ j) and f(j|S) depend on the current

solution S and thus need to be computed on the fly through
calls to a function evaluator for f . However, f(j|∅) in Eq. 5
is simply the travel demand between the endpoints of edge
j, so this term can be looked up from the demand matrix.

For general supermodular functions, the f(j|E \ j) terms
in Eq. 6 can be precomputed for each j ∈ E. These terms
quantify the largest reduction in objective value that could
occur as a result of removing element j from the current
solution. However, for our restricted supermodular function,
we need to find maxS∈C f(j|S\j), where C is the collection
of sets over which the supermodularity property holds, or
the graph matroid in our case. The largest objective value
reduction for removing a given edge j occurs when S is
a specific spanning tree on G such that j is the cut-set
for a weighted max-cut on the spanning tree. We adopt a
sampling approach to evaluate the maximum possible impact
of each edge j, sampling a set Tj of N random spanning
trees of G in which j is a member and setting f(j|E \ j) ≈
maxT ∈Tj {f(j|T \ j)}.

Another simple modular lower bound that was successfully
used for constrained submodular maximization [11] is the
following: ∑

j∈S′
f(j|∅) ≤ f(S′) (7)

where f(j|∅) is again the demand between the endpoints
of edge j. Eq. 7 does not require a current solution or any
expensive function evaluations to compute, and is in fact
equivalent to Eq. 5 or Eq. 6 when the initial solution S is
the empty set.

B. Semigradient Ascent

The modular lower bounds in Eqs. 5 and 6 are computed
with respect to a solution S, and can be used to iteratively
find solutions of increasing objective value using Algorithm 1
proposed in [12] and adapted to our restricted supermodu-
larity setting. A current solution to Budget-PCSF (Eadd) is
used to compute the coefficients for one of the subgradient-
based modular lower bounds (lines 9 and 12). Then, we find
a new solution that maximizes this modular lower bound
subject to budget and matroid constraints (lines 10 and 13).
We alternate between the two bounds, terminating when no
further changes to the solution are made under either of them.

Algorithm 1 SEMIGRADIENT-ASCENT

1: function SEMIGRAD(E, c,B, p, ε)
2: current mlb← m̌
3: m̌ converged←False
4: m̂ converged←False
5: converged←False
6: Eadd ← ∅
7: while not converged do
8: if current mlb = m̌ then
9: m̌Eadd(·)←GETMLBCOEFFS(Eadd)

10: E′add ← arg maxS∈C m̌Eadd(S)
11: else
12: m̂Eadd(·)←GETMLBCOEFFS(Eadd)
13: E′add ← arg maxS∈C m̂Eadd(S)

14: if E′add = Eadd then
15: if current mlb=m̌ then
16: m̌ converged←True
17: current mlb← m̂
18: Eadd ← E′add
19: else
20: m̂ converged←True
21: current mlb← m̌
22: Eadd ← E′add

23: if m̌ converged and m̂ converged then
24: converged←True

25: else
26: Eadd ← E′add
27: m̌ not converged←True
28: m̂ not converged←True
29: return Eadd

C. Maximizing Modular Lower Bounds

Maximizing any of the above modular lower bounds
corresponds to maximizing a modular function subject to
both a knapsack and a matroid constraint. There is relatively
little work on solving the 0-1 knapsack problem (whose
objective is the modular sum of the item values), subject to
additional constraints beyond the budget constraint. However,
maximizing submodular functions subject to combinations of
different numbers and types of constraints is an active area
of research. We leverage these approaches based on the fact
that modular functions are in fact submodular (as well as
supermodular), with the inequality satisfied with equality.

Maximizing a monotone submodular function subject to a
knapsack and a matroid constraint is NP-hard to approximate
to within a factor better than 1− 1

e [25], and only a handful of
relatively recent works have proposed algorithmic techniques
for addressing this problem. One of the first approaches
for submodular maximization suitable for a combination of
matroid and knapsack constraints was the randomized swap
rounding algorithm proposed by [26]. More recently, [25]
presented a simpler 1−e−2

2 -approximation algorithm that also
handles the simultaneous application of a matroid constraint
and k knapsack constraints. The algorithm proceeds by
greedily building the solution set by considering local search

moves (either adding a single element or by swapping a
previously added element for a new one) that respect the
matroid constraints. The best move is chosen greedily ac-
cording to benefit-cost ratio. Despite the attractive guarantees
regarding the quality of this solution set, the algorithm is not
guaranteed to terminate in polynomial time.

Algorithm 2 KNAPSACK-REPAIR

1: function KR(E, c,B, p, ε)
2: add edges←True
3: Eadd ← ∅
4: while add edges do
5: EK ←KNAPSACKILP(E, c,B, p, ε)
6: Eadd ← Eadd ∪ EK
7: Eprune ←REPAIR(Eadd, c)
8: Eadd ← Eadd\Eprune
9: B ← B −

∑
e∈Eadd

p(eu, ev)
10: E ← E\ (Eadd ∪ Eprune)
11: if B < min {c(e)}e∈E OR E = ∅ then
12: add edges←False
13: return Eadd

14: function REPAIR(Eadd, c)
15: cycles fixed←False
16: Eprune ← ∅
17: Ecycles ← FINDEDGESINCYCES(Eadd)
18: if Ecycles = ∅ then
19: cycles fixed←True

20: while not cycles fixed do
21: eexpensive ← arg maxe∈Ecycles c(e)
22: Eprune ← Eprune ∪ {eexpensive}
23: Ecycles ←FINDEDGESINCYCES(Eadd)
24: if Ecycles = ∅ then
25: cycles fixed←True

26: return Eprune

We adopt simpler heuristic strategies for maximizing the
modular lower bounds subject to the knapsack and matroid
constraints. Our first approach, GreedyMLB is similar to
[25] in that edges are chosen in order of benefit-cost ratio,
but swaps are not allowed. Each edge is added to the solution
only if it can be purchased with the remaining budget and
if it does not introduce a cycle into the solution. We also
propose a second algorithm, Knapsack-Repair, shown
in Algorithm 2. This algorithm alternates between phases of
edge addition, in which an integer linear program for the 0-1
knapsack problem is solved to allocate the available budget
towards edges, and repair, in which matroid constraint viola-
tions are corrected by greedily removing the most expensive
edge participating in a cycle in the solution, recovering the
cost of the edge, and continuing until all cycles are repaired.
The algorithm alternates between the knapsack and repair
phases until either the budget is exhausted or all edges have
been either added or discarded.

In both GreedyMLB and Knapsack-Repair, each
edge is added to the solution at most once (rather than
allowing edges to be swapped out and then potentially

swapped back in), and so the algorithms terminate quickly
and are good candidates for solving the subproblems in lines
10 and 13 of Algorithm 1.

IV. EXPERIMENTS AND RESULTS

We compare the performance of four algorithms: 1) a
baseline Greedy algorithm that iteratively constructs a
solution by adding the edge with the best benefit to cost ratio
without violating the knapsack and matroid constraints ([20],
implemented with lazy evaluation); 2) KR maximizing f by
applying Knapsack-Repair (Algorithm 2) to the modular
lower bound in Eq. 7; 3) Semigrad-GreedyMLB (Algo-
rithm 1) where at each iteration the modular lower bound
is optimized greedily; and 4) Semigrad-KR (Algorithm 1)
where at each iteration the modular lower bound is optimized
by calling Knapsack-Repair. We report results on a real
road network from Senegal, a country where flood resilience
is of particular concern, and on synthetic instances to more
fully characterize the algorithms’ performance. For each
problem instance, we compute the cost of the minimum
spanning tree, which is the minimum cost at which all the
available profit can be obtained. We then vary the budget
allocated for Budget-PCSF as a fraction of the MST cost. The
knapsack ILPs within KR were solved using Gurobi v8.0. All
experiments were run on a cluster of five 32-core machines
with 2.10GHz processors and 256GB of RAM.

A. Synthetic Instances

We synthetically generate instances of Budget-PCSF on
which to evaluate our proposed methods. Specifically, we
generate random planar graphs with mean degree close to
3.8, the mean degree of the Senegal road network retrofitting
instance under the 50-year flood scenario. We vary the size of
the instances parameterized by number of edges, generating
20 random instances of each graph size. We also created a
similar dataset with random Erdos-Renyi graphs, for which
results can be found on our GitHub page. We generated costs
for edges and demand between pairs of vertices following a
random uniform distribution.

Figure 2 shows the relative quality of solutions found
by KR, Semigrad-GreedyMLB and Semigrad-KR com-
pared to the Greedy method at different budget levels for
instances varying from 500 to 1500 edges. Solution quality
is reported as % improvement in objective value compared
to the Greedy baseline. The results show that for budget
fractions 0.1-0.2 and 0.7-0.9, all 3 algorithms achieve results
on par with the Greedy baseline. At intermediate budget
levels, the two iterative semigradient ascent-based methods
deliver dramatic improvements over the Greedy solutions.

Figure 3 shows the mean runtime for each algorithm for
Budget-PCSF at different budget levels and instance sizes.
KR is the fastest method by far, with runtimes under 1
second in nearly all cases. This means that KR can provide
solutions with quality on par with Greedy with a speed-up
of 100 to 5000 times. The runtimes for the two semigradient
ascent-based methods also include the time taken to estimate
the maximum value of each edge in the graph instance, as

Fig. 2: Solution quality relative to Greedy versus budget level on random planar graphs of different sizes; KR is on average
as good as Greedy, while Semigrad-GreedyMLB and Semigrad-KR find solutions 3-15 times better than Greedy.

Fig. 3: Mean runtime versus budget level for Greedy, KR, Semigrad-GreedyMLB and Semigrad-KR on random
planar graphs of 3 sizes; Knapsack-Repair (KR) is extremely fast across all instance sizes and budget levels.

described in Section III-A. Semigradient-based methods are
typically faster than Greedy across different budgets; hence,
at intermediate budget levels, semigradient-based methods
beat Greedy in both solution quality and time.

B. Road Upgrades for Flood Resilience in Senegal

Road infrastructure plays a key role in socioeconomic
development, and consequently infrastructure expansion ini-
tiatives are a core focus of many countries’ economic plans.
However, extreme weather events cause damage to essential
infrastructure, costing billions of dollars to repair and poten-
tially setting back economic development and exacerbating
the existing vulnerabilities faced by the population. Flooding
is of major concern in Senegal, due to both a recent increase
in severe floods and the susceptibility of the largely unpaved
road network to damage from precipitation. Preserving con-
nectivity via the national and regional road network in the
event of frequently-occurring (e.g. 5- or 10-year) floods is
an important goal towards enabling recovery efforts as well
as normal activity to continue in the face of these risks.

TABLE I: Budget-PCSF instance sizes resulting from floods
of different return periods on the Senegal road network.

Return Period Vertices Edges MST Cost (km)
5 161 178 60.399

10 285 321 122.593
20 444 518 211.250
50 654 758 353.884

We apply the Budget-PCSF problem to retrofitting the
Senegal regional road network against 5, 10, 20 and 50-year
flooding scenarios. The full road network consists of 6917
vertices corresponding to road intersections or endpoints and
7175 edges corresponding to road segments forming a single
connected component. The flood risk of each road can be
estimated from predicted or historical flood data. The costs
of the edges are assumed to be proportional to the length
of the flooded portion of the road segment, which would

need to be fortified. We construct a compact representation
of the flooded road network, where each vertex represents
a connected component and each edge is the least cost
edge between a pair of connected components. The Budget-
PCSF graph sizes resulting from the 4 flood scenarios are
summarized in Table I. Travel demand over the network
can be estimated from population data, or from fine-grained
mobility data mined from call detail records, for exam-
ple [20]. Unlike our synthetic instances with random uniform
demands, the pairwise travel demands between vertices in the
Senegal road network graphs were highly skewed, with very
low travel demand between all but a few vertex pairs.

We compare the performance of the Greedy algorithm,
KR, Semigrad-GreedyMLB and Semigrad-KR with a
budget of B = 0.1×MST cost in Table II. The four methods
perform more similarly compared to our experiments on
synthetic instances; this is due to the fact that the highly
skewed pairwise demands enable the Greedy baseline to
perform reasonably well. Nevertheless, KR still produces
solutions as good as or better than Greedy in a fraction of
the time, providing a 140× speedup on the smallest instance
(5-year flood scenario) and a > 8000× speedup on the
largest instance (50-year flood scenario). The semigradient-
ascent based methods improve solution quality beyond either
Greedy or KR while still being 5 to 20 times faster than
Greedy. Although the higher objective values attained by
Semigrad-GreedyMLB and Semigrad-KR come at the
cost of more iterations and longer runtime compared to KR,
these algorithms terminate within a few seconds on the real-
world road instances, e.g. in under 3 minutes on even the
largest instance corresponding to the 50-year flood scenario.

V. CONCLUSION

We address the problem of strategically fortifying edges
in an infrastructure network against failures in order to
maximize satisfied demand between vertices in the network.
Unlike previous work on network design that relies on integer

TABLE II: Best found solution objective value (number of feasible trips) and runtime (s) on the Senegal road network for 5-,
10-, 20- and 50-year floods with budget 0.1*MSTCost. Values in parentheses are gap percentages for sub-optimal solutions.

Method 5-year 10-year 20-year 50-year
Objective Time (s) Objective Time (s) Objective Time (s) Objective Time (s)

Greedy 1195531703 14.03 1182448994 84.00 1177026417 332.30 1161809642 1140.11
(0.02%) (0.75%) (0.08%) (0.83%)

KR 1195531703 0.10 1182534472 0.05 1177389779 0.07 1161974353 0.13
(0.02%) (0.74%) (0.05%) (0.82%)

Semigrad-GreedyMLB 1195800142 2.97 1191291479 7.06 1177993964 32.17 1171044232 85.84
(0.00%) (0.00%) (0.00%) (0.04%)

Semigrad-KR 1195798624 2.06 1183590105 5.04 1177948435 16.63 1171484174 155.19
(0.00%) (0.65%) (0.00%) (0.00%)

programming-based methods, we show that our optimization
objective exhibits the property of restricted supermodular-
ity, connecting budget-constrained prize-collecting Steiner
forest to the vast literature on submodular/supermodular
optimization. We demonstrate how to extend recent work
on constrained supermodular maximization to our restricted
supermodular setting. We also propose a novel, fast algorithm
for maximizing modular functions subject to a knapsack and
a budget constraint. Empirically, we show that our proposed
algorithms perform as well as a greedy baseline on both
synthetic and real-world networks, while typically being sig-
nificantly faster. Importantly, we show that supermodularity-
based algorithms have the potential to scale well to solve
large practical network design problems in this family.

ACKNOWLEDGMENTS

Gupta and Dilkina were partially supported by National
Science Foundation Grant No. CCF-1522054 (COMPUST-
NET: Expanding Horizons of Computational Sustainability).
Dilkina was partially supported by the U.S. Department of
Homeland Security under Grant Award No. 2015-ST-061-
CIRC01. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the U.S Department of Homeland Security.

REFERENCES

[1] G. Forzieri, A. Bianchi, F. B. e Silva, M. A. M. Herrera, A. Leblois,
C. Lavalle, J. C. Aerts, and L. Feyen, “Escalating impacts of climate
extremes on critical infrastructures in europe,” Global environmental
change, vol. 48, pp. 97–107, 2018.

[2] OECD, “Climate-resilient infrastructure,” OECD Environment Policy
Papers, no. 14, 2018. doi: 10.1787/4fdf9eaf-en.

[3] S. Peeta, F. S. Salman, D. Gunnec, and K. Viswanath, “Pre-disaster
investment decisions for strengthening a highway network,” Comput
Oper Res, vol. 37, no. 10, pp. 1708–1719, 2010.

[4] K. Kumar, J. Romanski, and P. Van Hentenryck, “Optimizing infras-
tructure enhancements for evacuation planning.,” in AAAI, pp. 3864–
3870, 2016.

[5] X. Wu, D. Sheldon, and S. Zilberstein, “Optimizing resilience in large
scale networks.,” in AAAI, pp. 3922–3928, 2016.

[6] D. T. Aksu and L. Ozdamar, “A mathematical model for post-disaster
road restoration: Enabling accessibility and evacuation,” Transporta-
tion Research Part E: Logistics and Transportation Review, vol. 61,
pp. 56–67, 2014.

[7] F. Liberatore, M. T. Ortuño, G. Tirado, B. Vitoriano, and M. P.
Scaparra, “A hierarchical compromise model for the joint optimiza-
tion of recovery operations and distribution of emergency goods in
humanitarian logistics,” Comput Oper Res, vol. 42, pp. 3–13, 2014.

[8] P. Chinowsky and C. Arndt, “Climate change and roads: A dynamic
stressor–response model,” Review of Development Economics, vol. 16,
no. 3, pp. 448–462, 2012.

[9] M. T. Hajiaghayi and K. Jain, “The prize-collecting generalized steiner
tree problem via a new approach of primal-dual schema,” in Proc.
of the 17th annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 631–640, Society for Industrial and Applied Mathematics, 2006.

[10] W. Bai and J. Bilmes, “Greed is still good: Maximizing monotone
submodular+supermodular (bp) functions,” in ICML, pp. 314–323,
2018.

[11] E. B. Khalil, B. Dilkina, and L. Song, “Scalable diffusion-aware
optimization of network topology,” in Proc. of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 1226–1235, ACM, 2014.

[12] R. Iyer, S. Jegelka, and J. Bilmes, “Fast semidifferential-based sub-
modular function optimization,” in ICML, pp. 855–863, 2013.

[13] N. Tuncbag, A. Braunstein, A. Pagnani, S.-S. C. Huang, J. Chayes,
C. Borgs, R. Zecchina, and E. Fraenkel, “Simultaneous reconstruction
of multiple signaling pathways via the prize-collecting steiner forest
problem,” J Comput Biol, vol. 20, no. 2, pp. 124–136, 2013.

[14] S. Chawla, K. Garimella, A. Gionis, and D. Tsang, “Backbone
discovery in traffic networks,” International Journal of Data Science
and Analytics, vol. 1, no. 3-4, pp. 215–227, 2016.

[15] M. Bateni, C. Chekuri, A. Ene, M. T. Hajiaghayi, N. Korula, and
D. Marx, “Prize-collecting steiner problems on planar graphs,” in Proc.
of the 22nd annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1028–1049, Society for Industrial and Applied Mathematics, 2011.

[16] D. Segev and G. Segev, “Approximate k-steiner forests via the la-
grangian relaxation technique with internal preprocessing,” in Euro-
pean Symposium on Algorithms, pp. 600–611, Springer, 2006.

[17] Y.-S. Myung and H.-j. Kim, “A cutting plane algorithm for computing
k-edge survivability of a network,” European Journal of Operational
Research, vol. 156, no. 3, pp. 579–589, 2004.

[18] T. C. Matisziw and A. T. Murray, “Modeling s–t path availability to
support disaster vulnerability assessment of network infrastructure,”
Comput Oper Res, vol. 36, no. 1, pp. 16–26, 2009.

[19] K. Viswanath and S. Peeta, “Multicommodity maximal covering
network design problem for planning critical routes for earthquake
response,” Transportation Research Record: Journal of the Transporta-
tion Research Board, no. 1857, pp. 1–10, 2003.

[20] A. Gupta, C. Robinson, and B. Dilkina, “Infrastructure resilience for
climate adaptation,” in Proc. of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies, p. 28, ACM, 2018.

[21] I. Shames and T. H. Summers, “Rigid network design via submodular
set function optimization,” IEEE Transactions on Network Science and
Engineering, vol. 2, no. 3, pp. 84–96, 2015.

[22] N. Mehr and R. Horowitz, “A submodular approach for optimal sensor
placement in traffic networks,” in 2018 Annual American Control
Conference (ACC), pp. 6353–6358, IEEE, 2018.

[23] D.-Z. Du, R. L. Graham, P. M. Pardalos, P.-J. Wan, W. Wu, and
W. Zhao, “Analysis of greedy approximations with nonsubmodular
potential functions,” in Proc. of the 19th annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 167–175, Society for Industrial and
Applied Mathematics, 2008.

[24] A. Aouad, R. Levi, and D. Segev, “Greedy-like algorithms for dynamic
assortment planning under multinomial logit preferences,” 2015.

[25] K. K. Sarpatwar, B. Schieber, and H. Shachnai, “Constrained sub-
modular maximization via greedy local search,” arXiv preprint
arXiv:1705.06319, 2017.

[26] C. Chekuri, J. Vondrak, and R. Zenklusen, “Dependent randomized
rounding via exchange properties of combinatorial structures,” in 2010
IEEE 51st Annual Symposium on Foundations of Computer Science,
pp. 575–584, IEEE, 2010.

